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In the numerical calculation of f(t), the inverse Laplace transform of F(p), where 
f(t) = (1/2-i) sz::,” @“F(p) dp, sufficient accuracy is usually obtainable when p”F(p), 
s > 0, is replaced by an interpolating polynomial in l/p. From the values of F(p) with 
F’(p), or with F’(p) and F”(p), forp at points equally spaced on the real axis, an osculatory 
or hyperosculatory interpolation polynomial for p”F(p), namely La,+&) or LI,&x), 
where x = l/p, is obtained in barycentric form. Then f(t) is calculated by a Gaussian- 
type quadrature formula employing complex values of L,,-, or L8n-1, instead of 
p’F(p), which may be unknown or more difficult to compute. For calculating L,,-, and 
L,,-, , auxiliary coefficients, suitable for economical storage in the program, are given 
exactly for n = 2(1)11 and n = 2(1)7, furnishing up to 21st and 20th degree accuracy, 
respectively. 

For a given function F(p), its inverse Laplace transformf(t) is expressible as 

f(t) = & Jcy: e*“F(p) dp, (1) 

where c is a real constant that is greater than the real part of each of the singular 
points of F(p). Usually, c > 0, but we may have also c < 0, so long as for f(t) 
satisfying Dirichlet’s conditions in any finite positive interval, the integral Jr e-et 
f(t) dt is absolutely convergent [I, p. 751. For a thorough survey of the many 
methods for the numerical evaluation of f(t) with 183 references, see [2]. For an 
exhaustive and more up-to-date bibliography with 176 items, see [3]. This article 
is concerned with a numerical method that utilizes J’(p) and F’(p) (osculatory case) 
or F(p), F(p), and F”(p) (hyperosculatory case) at equally spaced points on the 
real axis in conjunction with a Gaussian-type quadrature formula. An earlier 
work [4] was based upon the numerical values of IQ) alone, at the points 
p = 1, 2,..., PZ, co, assuming that in (1) we may approximate F(p) by P&/p), 
an (n + I)-point nth degree Lagrangian interpolation polynomial in l/p. The 
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condition F(co) = 0 was satisfied by the absence of a constant term in P&/p). 
A computer-adapted version of [4] was given in [5]. Piessens [6] treats a some- 
what more general approximation than that in [4] by assuming that in (l), 
F(p) = p? x an interpolation polynomial in l/p for various values of s > 0. 
Many numerical tests confirmed the practicality of the P,(l/p) approximation, 
even when it was compared with more accurate methods [4, 6, 71. 

Whenever F(p) may be approximated in (1) by polynomials in l/p, without a 
constant term, even if the degree must be quite high in order to obtain f(t) 
accurately, we have the very efficient Gaussian-type quadrature 

f(t) = (1/2vit) [r’-iim e+(p) dp - (I/t) i A&pi), 
- c’--im i=l 

(2) 

where +(p) = F(p/t), which is exact whenever F(p), and consequently 4(p), 
are polynomials of the (2n)th degree in l/p without a constant term [8,9]. The 
pi and Ai in (2) are all, with a single exception for each odd it, located in the 
complex plane. Tables of pi and Ai , as well as l/p, , are given to single precision 
in [8] and double precision in [9]. The most extensive tabulation, by Stroud, gives 
pi and Ai’ = Ai/Pi for n = 2(l) 24, to 30s [lo, pp. 307-3151, the reason for Ai’ 
instead of Ai being that Stroud sets 4(p) = (p/t) F(p/t) so that 

(@/P) d(P) dP - i Ai’$(Pd, 
id 

(2’) 

which is now exact whenever #(p) is any polynomial of the (2n - 1)th degree 
in l/p. In the more general case when F(p) is approximable by p-’ x a polynomial 
in l/p, s > 0, setting r&p) = (~/t)~ F(p/t), we have 

f(t) = (1/2&--s) jC;I: (e%“) #PI dp - 5 Ai’&PJ. (2”) 
i=l 

For (2”), there are tables of pi and Ai for s = l(1) 5, 12 = l(1) 15, to 20s [ll, 
pp. 49-621 and for s = O.Ol(O.01) 3, s f 1, 2, 3, for n = l(1) 10, to 8S for pi 
and 7S for Ad’ [ll, pp. 63-2621; also, for s = O.l(O.1) 3 (0.5) 4 and 16 fractions 
<10/3, n = 6(l) 12), to 16s [12]. 

In many cases, (2), (2’), or (2”) may be inconvenient when F(p), for p complex, 
is either unknown or difficult to calculate. Now, if pT(p) is replaceable in (1) by 
a suitable interpolating function, based upon values of F(p) that are known for p 
just on the real axis, calculating that interpolating function for some complex 
argument, say, t/pi (cf. (4) and (13) below) may be easier than calculating 
(~~/t)~F(p,/t) in the complex plane. 

Frequently, we are given or readily can calculate F(p) with either F’(p) alone, 
or both F’(p) and F’(p) on the real axis at the conveniently located and equally 
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spaced integral points p = j, j = l(1) n.1 Some functions F(p) occur naturally for 
integral values of p. Other functions F(p) may be readily available from previously 
calculated tables whose arguments are at equal intervals. Then, when F(p), with 
F’(p) or with F’(p) and F’(p), satisfies simple difference equations, it is usually 
easier to generate J’(j) with F(j), or with F(j) and F”(j), than to calculate 
(PJV~;(P~/~) for C3, (2’1, or (2”). On the basis of the test examples in [4, 6, 71, 
where in (1) either F(p) alone or p”F(p), s > 0, was replaced by an interpolation 
polynomial in l/p, say L&/p), based on just real values of p, we should expect 
much greater accuracy by replacing in (1) ~T(P),~ s > 0, by L,,-,( l/p)(L,,-,( I/p)), 
a (2n - 1)th ((3n - 1)th) degree osculatory (hyperosculatory) interpolation poly- 
nomial in the variable l/p, obtained from F(j) and F’(j)(F( j), P’(j) and F”(j)) for 
12 integral values of j, where IZ is not too large. 

It should be emphasized that once we admit the accuracy of the approximation 
(1/2ri) j~~~~ @F(p) dp -(l/25+) J~~~~ e”tp-SL,,-l(l/p) dp, or (1/27~i) JI?:E eptp+ x 
L,,-,(1/p) dp, where Lz,&l/p) or L,,-,(1/p) is real, having been determined by 
osculatory or hyperosculatory interpolation on the real axis, in the Gaussian-type 
quadrature applied to the second or third integral (cf. (4) or (13) below), which is 
exact for polynomials, the complex points t/pi may be very far from the points 
of interpolation on the real axis, and Lz,+(t/pi) or LB&t/pi) may differ very much 
from (pi/t)sF(pi/t).3 The only caution to be observed is with the possible loss of 
significant figures in the course of the computation when t/pi, the arguments in 
the interpolation polynomials in (4) or (13), are far from the interpolation points 
l/j. But, for s = 1 (implicit in (2) explicit in (2’)), which is by far the most impor- 
tant case, the tables in [9] and surely those in [lo] have enough significant figures 
for almost any conceivable example. For nonintegral s, the single-precision 
tabulation of pi and Ai in [ 111, in certain cases might not provide enough signi- 
ficant figures. 

The interpolation points in [4] are the integers j = l(1) n and j = co. Now, 
for osculatory and hyperosculatory interpolation, the assumption that 
F(p) -~-~P,(l/p), s > 0, would immediately imply, besides F(W) = 0, also, 
P@)(co) = 0, k 3 1. Such information is useless because it cannot yield any 
knowledge about derivatives of Lz,Jl/p) or L3,Jl/p) with respect to l/p, 
for l/p = 0. Therefore, here, we drop the interpolation point j = co and base 

1 Given F(jh) with F’(jh), or F(jh) with both F’Cjh) and F”(j/z), instead of F(j), F’(j), and F”(j), 
we change the variables in (1) to p‘ = p/h and t’ = t/r. Then, if G(p’) = F(p) = F(hp’), we have 
G(j) = F(‘jb), G’(j) = hF’(jh), G”(j) = hF”(jb), and f(t) = jrg(t’) = (h/24 J$Ti,” ePt’ G(p) dp. 

2 “F(p) alone” requires the condition of no constant term in the interpolating polynomial in 
I/p, which is more convenient to avoid in the osculatory and hyperosculatory cases (cf. paragraph 
after next). 

a The variable in the osculatory and hyperosculatory interpolation polynomials for psF(p) is 
x = l/p, the interpolation points xj = l/j chosen before we replace ept by eP and psF(p) - Lzn-l 
(UP) or Lsn-dl/~) by .Ln-l(f/p) or L3,-&/~). 
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our approximation upon F(j) and F’(j), or F(j), F’(j), and F”(j), for j = l(l)n. 
Considering F(p) = p-“{ p”F( p)}, s > 0, we have the weight function ePpes 
multiplying p”F(p), which is either exactly or closely approximable by a poly- 
nomial in the variable x = l/p. The osculatory and hyperosculatory interpolating 
polynomials in x are determined by (d/dx){p”F(p)} 12=1,3 and (d”/dx”){p”F(p)} /s=llj 
along withJ”F(j), j = l(l)n. They are expressible in terms of F(j), F’(j), andF”(j) 
as follows: 

~2n-lU/j) or ~3n-lU/j) = PW, (3) 

G,-dl/j) or L&(1/j) = (d/dx){psF(p)} lscllj = -sjs+lF(j) - js+2F(j), (3’) 

and 

G-lw..) = (d”/dx”){p”F(p)} l&,j 

= 4s + 1) j”+‘F(j) + (2s + 2)j”+3F’(,j) + p+“F”(j). (3”) 

In the most widely used case, s = 1, the right members of (3’) and (3”) are 
-j2F(j) -j3F’( j) and 2j3F( j) + 4j4F’( j) + j5F”(j), respectively. 

The purpose of this article is to give a convenient computer-adapted method of 
calculating inverse Laplace transforms by replacing pF(p) by the barycentric 
form of an osculatory or a hyperosculatory interpolation polynomial in the 
variable x = l/p and by employing the Gaussian quadrature formulas that are 
tabulated in [8-11].4 To facilitate the computation of the barycentric forms, 
auxiliary coefficients, which may be stored economically in the program, have 
been calculated exactly to furnish up to 21st or 20th degree accuracy. It is also 
worth noting that the interpolation formulas, which are given here in conjunction 
with the calculation of inverse Laplace transforms, have many other applications 
involving reciprocal arguments. 

OSCULATORY INTERPOLATION 

In addition to the cases where F(j) and F’(j), j = l( 1) n are specified initially, 
often, from F(j) alone, we may readily obtain F’(j) when F(p) satisfies a simple 
first-order differential equation. 

4 For s = 1, because the interpolating polynomials in l/p that are given here will generally 
have a constant term, we require extra divisions by pi in order to use the Christoffel numbers AI 
in [8,9]. This does not occur in (2’) or (2”), which occur in [lo] or [ll]. Henceforth, the unprimed 
Ai will denote the Stroud-Krylov Christoffel numbers. 
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In (l), we replace psF(p) by the osculatory interpolation polynomial Lz,Jx), 
x = l/p, where L,,-,(1/j) and L&&/j), j = l(1) n, are given by (3) and (3’). 
Then, we find 

f(t) = ww S,f: (WP%PWP)~ dp - (1/27ii)~c~~ (Wp*) Lz,J/~) dp 

= (Ij2niP) ]cfyI (ep/p”) Lz,&t/p) dp 

= P-l i AiLz,&/pi). 
i=l 

(4) 

We calculate L,,-,(t/pJ efficiently from the barycentric form of Hermite’s n-point 
osculatory interpolation formula. Since it is exact for any (2n - 1)th degree 
polynomial, we have, for any xi , j = l(1) IZ, and any x, 

L,,-,(x) = i Lp(x)>“W - 2Lj”)‘(x,)(x - Xi)1 L2,-l(XJ + (x - Xj) L;,&j)l 

where 

j=l 

(5) 

L,(“)(x) = fi (x - Xk)/ fi (Xj - Xk). (6) 
k=l.k#j k=l,k#j 

The barycentric form of (5) is 

(7) 

and 

cyj = d&x - xj)” - 2L,(““(x,) dj/(x - xj), j = l(1) n, (8) 

flj = d,/(x - xj), j = l(1) n, (9) 

dj = jl/ fi (xj-xk$ j= l(l)n. (10) 
k=l, k#ej 

For xj = llj, for each n, di and -2Lp)‘(xj) di , j = l(1) n, are all multiplied 
by a rational number r(a) to obtain (LX, and j$ now denoting r(n) aj and r(n) pj) 

and 
aj = lzj/(X - l/j)2 + bj/(X - lb), j = l(1) Iz, (11) 

pj = q/(x - I/j), j = l(1) Iz, (12) 



INVERSE OSCULATORY LAPLACE TRANSFORMS 485 

where now, uj and bj are integers whose g.c.d. = 1 for every n. The values of r(n) 
are given in the following schedule: 

n 2 3 4 5 6 7 8 9 10 11 

r(n) l/4 l/9 3116 6125 516 10149 35132 140/81 6315 1260/121. 

Tables Ia-Ij give the exact values of ai and bj , j = l(1) n, for 12 = 2(l) 11, fur- 
nishing up to 21th degree accuracy in L,,-,(x). Thus, L,,-,(t/pJ in (4) is found by 
first setting x = t/pi in (11) and (12) where for each i = l(1) n we havej = l(1) n, 
and then employing (7), where L&xi) = &+,(1/j) and Li,-,(x,) = &-,(1/j), 
j = l(1) n, are given by (3) and (3’). 

TABLE Ia TABLE Ib TABLE Ic 

n=2 n=3 n=4 

i Qj bj i 4 6 i 4 b, 

1 1 -4 1 1 -1 1 3 -29 
2 1 4 2 16 -128 2 432 -6912 

3 9 135 3 2187 -19683 
4 168 26624 

TABLE Id 

n=5 

1 6 -73 
2 6144 -1 39264 
3 1 57464 -31 79136 
4 3 93216 -20 97152 
5 93750 60 15625 

TABLE Ie 

n=6 

i a5 bj 

1 30 -437 
2 1 92000 -55 04ooo 
3 196 83000 -7085 88000 
4 1966 OSGQO -57671 68000 
5 2929 68750 12207 03125 
6 503 88480 52605 57312 
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TABLE If 

n=7 

1 10 -169 
2 3 68640 -126 32064 
3 1328 60250 -61780 01625 
4 41943 04000 -20 13265 92000 
5 2 19726 56250 -67 74902 34375 
6 2 17678 23360 44 40635 96544 
7 28247 52490 44 09438 63689 

TABLE Ig 

n=8 

70 -1343 
140 49280 -5563 51488 

1 64055 83670 -92 03532 43887 
143 86462 72000 -9207 33614 08000 

2093 50585 93750 -1 20376 58691 40625 
6719 72707 12320 -1 85464 46716 60032 
4747 56150 99430 2 09367 46258 84863 

481 03633 71520 1 05773 01859 20512 

TABLE Ih 

n=9 

140 -3001 
1468 00640 -65682 80064 

52 49786 77440 -3417 61119 01344 
11785 39026 02240 -9 23974 59640 15616 

4 18701 17187 50000 -334 96093 75CKKl OOOOO 
34 40500 26047 07840 -2188 15816 56594 18624 
74 44176 44759 06240 -1406 94934 85946 27936 
39 40649 67394 91840 2990 39015 25740 09344 

3 20275 09436 94540 948 95222 78242 37241 
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TABLE Ii 

n = 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1260 
66886 04160 

1029 35735 24160 
38 18466 44431 25760 

3052 33154 29687 50000 
56432 80552 23720 34560 

2 95459 36320 48718 66560 
4 59637 31196 94328 21760 
1 89119 24047 42188 92460 

12600 00000 00000 00000 

-33 27102 
-5 17862 79809 

-3502 80655 15827 
-3 05233 15429 68750 

-52 82110 59689 40224 
-193 72285 58079 94320 
-18 91079 49793 13807 
219 93216 81543 39842 

48 61000 00000 00000 

-29809 
81216 
15616 
36384 
00000 
34816 
50784 
52384 
01009 
ooooo 

TABLE Ij 

n = 11 

i *j bs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1260 
3 30301 44000 

98850 33776 83500 
1246 84618 58979 84000 

2 11967 46826 17187 50000 
81 26323 99522 15729 76640 

904 84429 98149 20091 34000 
3268 53246 55604 11176 96000 
3829 66461 96029 32572 31500 
126000000000000000000000 

70 05495 81500 02116 66060 

-180 44944 
-80 97960 88475 

-1 30051 99455 19497 
-250 82811 01763 61187 

-9751 58879 42658 87571 
-94164 13013 40726 84172 

-2 05201 58107 59450 52176 
66225 84317 18478 55411 

2 08900 00000 00000 00000 
34243 58633 29711 88613 

-32581 
38400 
14725 
21600 
50000 
96800 
11600 
38400 
24125 

79381 

HYPEROSCULATORY INTERPOLATION 

Besides the situations where F(j), F’(j), and F”(j), j = l(1) n, are given initially 
or where F’(j) and F”(j) are obtainable from F(j) when F(F(P) satisfies a first-order 
differential equation, there also may be instances when we have F(j) and F’(j) 
initially and F”(j) is obtainable from them when F(p) satisfies a simple second-order 
ordinary differential equation. 
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In (1), we replace p”F(p) by the hyperosculatory interpolation polynomia 
L&), x = l/p, where L,,&Y), L&-,(1/j), and tL(l/j), j = l(1) n, are giver 
by (3), (3’), and (3”). Then, we find 

[h+1)/21 
= p-l 

c A&w&lpi), 
i=i 

where [(3n + 1)/2], the nearest integer to (3n + 1)/2, is the smallest number of 
points in the Gaussian quadrature formula that will provide at least (3n - 1)th 
degree accuracy. Hermite’s n-point hyperosculatory interpolation formula, exact 
for any (3n - l)th degree polynomial, when applied to &-i(~) itself, gives for 
any xj , j = l(1) ~1, and any x, 

&&x) = i {L,‘“‘(x))“([l - 3Ll”“(xj)(x - xi) + (6L1”“(xJ2 
j=l 

- #L:“‘“(Xj))(X - Xj)“] L,,-,(Xj) 

+ Kx - Xf) - 3Ll”“(X,)(X - Xj)“] Lj,Jxj> + i(x - Xi)” L&-1(x&}, 
(14) 

where L::“)(X) is given by (6). The barycentric form of (14) is 

where 

q = d&c - xi)” - 3Lj”“(xj) dJ(x - x~)~ + [6Lj”)‘(xJ2 - $Lj(““‘(x,)J d,/(x - xi), 

j = l(1) n, (16) 

& = dJ(x - xi)” - 3Lp”(xJ d,/(x - xJ, j = l(1) ~1, (17) 

yi = 4/(x - xi>, j = l(1) n, (18) 

and 

j = l(1) fl- 09) 
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For xj = l/j, for each n, dj , -3L(jn)‘(xj) dj , and [6Ljn)‘(xJ2 - +Lj’+)“(q)] dj , 
j = l( 1) n, are all multiplied by a rational number r(n) to obtain (CL, , /Ij , and yj 
now denoting r(n) q , r(n) & , and r(n) rj) 

and 

aj = Uj/(X - l/j)3 + b&X - I /j)2 + q/(x - l/j,, j = l(l)n, (20) 

/3j = aj/(X - l/j)’ + bj/(X - l/j), j = l(1) n, (21) 

yj = 4(x - l/A, j = l(1) n, (22) 

where now, aj, bj, and cj are integers whose g.c.d. = 1 for every n. The values 
of r(n) are given in the following schedule: 

n 2 3 4 5 6 7 

r(n) l/S 2127 3132 121125 25118 6001343. 

Tables Ha-IIf gives the exact values of aj , b, , and cj , j = l(1) n, for n = 2(l) 7, 
furnishing up to 20th degree accuracy in L3&x). To obtain L3n--l(t/& in (13), 
set x = t/pi in (20)-(22), where for each i = 1(1)[(3n + I)/21 we have j = l(1) n, 
and then employ (15), where L3,+&ci) = L,,-,(1/j), Lj,-,(xJ = I&.&/j), and 
L&(xj) = Li,-,(l/j),j = l(1) n, are given by (3), (3’), and (3”). 

TABLE IIa 

1 1 -6 24 
2 -1 -6 -24 

TABLE IIb 

1 2 -21 129 
2 -128 1536 - 16896 
3 54 1215 16767 
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TABLE IIc 

n=4 

i af bj Cj 

1 6 -87 703 
2 - 10368 2 48832 -38 56896 
3 1 18098 -15 94323 430 46721 
4 -24576 -12 77952 -391 90528 

j 

TABLE IId 

n=5 

bj 

1 12 -219 2171 
2 -3 93216 133 69344 -2668 62592 
3 510 18336 -18366 60096 5 13116 91432 
4 -2013 26592 16106 12736 -17 60936 59136 
5 234 37500 22558 59375 12 50488 28125 

TABLE IIe 

n=6 

1 300 -6555 76577 
2 -1536 00000 66048 ooooo -15 95392 00000 
3 15 94323 00000 -860 93442 00000 29809 85429 25000 
4 -503 31648 00000 22145 92512 00000 -10 20054 73280 00000 
5 915 52734 37500 5722 04589 84375 18 97811 88964 84375 
6 -65 30347 00800 -10226 52341 45280 -9 07551 05722 85952 

i 

TABLE IIf 

n=7 

b, cj 

1 600 -15210 2 03939 
2 -42467 32800 21 82820 65920 -614 46259 99872 
3 2905 65366 75000 -2 02669 34330 81250 83 84626 86427 96875 
4 -5 15396 07552 00000 371 08517 43744 00000 -19488 84360 23296 00000 
5 61 79809 57031 25000 -2858 16192 62695 31250 2 21378 80325 31738 28125 
6 -60 93597 40010 49600 -1864 64080 44321 17760 -2 89436 12674 91454 32064 
7 2 84853 69059 65800 666 98491 65318 92070 87462 32697 42842 02997 
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